• Users Online: 1501
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Browse Articles Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 9  |  Issue : 1  |  Page : 101

Characterization of microcapsule containing walnut (Juglans regia L.) green husk extract as preventive antioxidant and antimicrobial agent


1 Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Department of Research, International Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Food and Drug Control Reference Laboratories Center, Food and Drug Organization, Iran

Correspondence Address:
Leila Mirmoghtadaie
Department of Food Science and Technology, Faculty of Nutrition and Food Science, Shahid Beheshti University, P. O. Box 19395-4741, Tehran
Iran
Seyede Marzieh Hosseini
Department of Food Science and Technology, Faculty of Nutrition and Food Science, Shahid Beheshti University, P. O. Box 19395-4741, Tehran
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijpvm.IJPVM_308_18

Rights and Permissions

Background: Walnut green husk (WGH) extract has been known as potential preventive and therapeutic antioxidants and antimicrobials due to its high polyphenol content. In this study, preparation of spray dried WGH extract-loaded microcapsules by maltodextrin and its blending with two other natural biodegradable polymers, pectin, or alginate were investigated. Methods: In this study, encapsulation efficiency (EE), total phenol content (Folin–Ciocalteu reagent method), antioxidant (DPPH scavenging assay) and antimicrobial activities (agar well diffusion method) structural (SEM and FTIR studies), and release properties of WGH extract-loaded microcapsules were investigated. Results: High retention of phenolic content in microcapsules indicated the successful encapsulation of WGH extract. Addition of biopolymers to maltodextrin matrix has a positive effect on EE and other properties of microcapsules. The microcapsules prepared with mixture of maltodextrin and pectin had higher EE (79.35 ± 0.87%) and total phenolic (TP) content (56.83 ± 1.04 mg gallic acid equivalents [GAE]/100 g) in comparison to maltodextrin and alginate mixture (EE: 75.21 ± 0.24%, TP content: 54.33 ± 1.53 mg GAE/100 g) and maltodextrin only matrix (EE: 72.50 ± 1.00%, TP content: 50.67 ± 1.35 mg GAE/100 g). Extract-loaded microcapsules also showed nearly spherical structure, good antioxidant (with the percentage DPPH inhibition ranged from 75.17 ± 1.42% to 80.87 ± 2.29%), and antimicrobial properties (with mean inhibition diameter zone ranged from 7.76 ± 0.86 mm to 11.53 ± 0.45 mm). Fourier transform infrared analyses suggested the presence of extract on microcapsules. The in vitro extract release from microcapsules followed an anomalous non-Fickian diffusion mechanism with almost complete release. Conclusions: WGH extract microcapsules can be used as novel and economic bioactive phytochemical and therapeutic agents to prevent oxidation and microbial activity.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed189    
    Printed6    
    Emailed0    
    PDF Downloaded41    
    Comments [Add]    

Recommend this journal