• Users Online: 86
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Browse Articles Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 10  |  Issue : 1  |  Page : 5

Cerium oxide nanoparticles protect cyclophosphamide-induced testicular toxicity in mice


1 Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center; Department of Anatomy, Faculty of Medicine, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
2 Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
3 Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
4 Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran

Correspondence Address:
Fereshteh Talebpour Amiri
Department of Anatomy, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2008-7802.250287

Rights and Permissions

Background: Cyclophosphamide (CP), as a chemotherapy drug, causes severe damage in testicular tissue through producing free radicals. Cerium oxide nanoparticles (NC) exhibit antioxidant and anti-inflammatory properties. The purpose of this study was to investigate the protective effect of NC on CP-induced testicular damage in mice. Methods: In this experimental study, thirty-two male mice were divided into four groups (eight mice in each group). The control group was received intraperitoneally (IP) normal saline, NC group was received NC for three consecutive days (100 μg/kg, IP), CP group was received CP (200 mg/kg, IP), and the CP + NC group received NC, three consecutive days before receiving CP. After 2 days, testicles were assessed for biochemical, histomorphometrical, histopathological, and immunohistochemical analyses. Results: CP administration caused statistically significant increases in sperm abnormality, malondialdehyde, protein carbonyl levels, reactive oxygen species, level and apoptosis, and decreases in sperm count, sperm viability, testosterone, glutathione activity, the mean thickness of the germinal epithelium, diameter of seminiferous tubules in mice. Degeneration, necrosis, arrest of spermatogenesis, congestion, and atrophy in testicular tissue confirmed the low Johnsen's Testicular score in CP group. Administration of NC significantly ameliorated the CP-induced adverse effects on testis compared with the CP group. In addition, pretreatment mice with NC significantly reduced caspase-3 immunoreactivity induced by CP in testis. Conclusions: This study showed that NC with scavenging free radicals and antiapoptotic properties enable to reduce the side effects of CP in the testicular tissue.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed403    
    Printed21    
    Emailed0    
    PDF Downloaded61    
    Comments [Add]    

Recommend this journal