• Users Online: 10672
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Browse Articles Search Archives Submit article Instructions Subscribe Contacts Login 

 Table of Contents  
Year : 2015  |  Volume : 6  |  Issue : 1  |  Page : 11

Protective effect of hydroalcoholic extract of tribulus terrestris on cisplatin induced renal tissue damage in male mice

Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

Date of Submission08-Mar-2014
Date of Acceptance15-Dec-2014
Date of Web Publication20-Feb-2015

Correspondence Address:
Ali Ghanbari
Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, P.O. Box: 1568, Kermanshah
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2008-7802.151817

Rights and Permissions

Background: According beneficial effects of Tribulus terrestris (TT) extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS) (EBEWE Pharma, Unterach, Austria) induced renal tissue damage in male mice.
Methods: Thirty mice were divided into five groups (n = 6). The first group (control) was treated with normal saline (0.9% NaCl) and experimental groups with CIS (E1), CIS + 100 mg/kg extract of TT (E2), CIS + 300 mg/kg extract of TT (E3), CIS + 500 mg/kg extract of TT (E4) intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed.
Results: The data were analyzed using one-way analysis of variance followed by Tukey's post-hoc test, paired-sample t-test, Kruskal-Wallis and Mann-Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman's capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days.
Conclusions: The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice.

Keywords: Cisplatin, mice, nephrotoxicity, Tribulus terrestris

How to cite this article:
Raoofi A, Khazaei M, Ghanbari A. Protective effect of hydroalcoholic extract of tribulus terrestris on cisplatin induced renal tissue damage in male mice. Int J Prev Med 2015;6:11

How to cite this URL:
Raoofi A, Khazaei M, Ghanbari A. Protective effect of hydroalcoholic extract of tribulus terrestris on cisplatin induced renal tissue damage in male mice. Int J Prev Med [serial online] 2015 [cited 2022 May 18];6:11. Available from: https://www.ijpvmjournal.net/text.asp?2015/6/1/11/151817

  Introduction Top

The anticancer drug of cis-diamminedichloroplatinum (II) or cisplatin (CIS) (EBEWE Pharma, Unterach, Austria) is widely used for the treatment of many solid tumors. Due to, the effectiveness of CIS achieves only by high doses, the occurrence of side-effects are common that limit the clinical usage of the drug. Although, low doses of the drug induce pathological signs in laboratory animals. [1],[2]

Nephrotoxicity is the most prominent side-effect of CIS that occur in over 30% of treated patients. [3] Tubular cell death, tissue damage, and the loss of renal function or acute renal failure in the rat are shown after administration to CIS. [4],[5]

The molecular mechanisms involve in CIS-induced nephrotoxicity are the formation of reactive oxygen species (ROS), [6] inducible nitric oxide synthase [7] and also decrease in antioxidant enzymes. [8] Tribulus terrestris (TT) plant is a member of the Zygophyllacea family, grows in tropical and moderate areas, including the US and Mexico, the Mediterranean region, and throughout Asia. [9] In folk medicine, TT is used as tonic, aphrodisiac, analgesic, astringent, stomachic, antihypertensive, diuretic, lithon-triptic and urinary anti-infective. [9],[10],[11] Moreover, TT extract is mainly used for kidney disorders and the fruit removes gravel from the urine and stone in the bladder. [12]

Because TT has been used to improve renal function in various regions of the world, the present study has been conducted to find the protective effect of TT extract on CIS-induced Nephrotoxicity in mice. In this regards, histopathological evaluation of the kidney tissue was performed.

  Methods Top


Inbred male Balb/c mice (30 ± 2 g) were obtained from a closed bred colony at the University. All animals received care as recommended by the Research Committee of the University. The mice were maintained on a regular diet and water at a 12:12 h light: Dark cycle without any stressful stimuli at 23°C ± 2°C. The animals were provided with standard diet pellets and water ad libitum. Experiments were started after 1-week of adaptation. All experiments were carried out according to the guidelines of the animal care and use committee at the university.


Cisplatin (EBEWE Pharma, Unterach, Austria) was dissolved in saline in darkness, 10-15 min before use and an interaperitoneal injection (5.5 mg/kg) was given at the 1 st day of experiment. [13]

Preparation of plant extract

Tribulus terrestris was purchased from a traditional medicine center and identified and authenticated by a botanist from Kermanshah Razi University. Extracting method was described previously. [14] In this method, TT fruit (200 g) were powdered and added to 400 cc of 70% ethanol and were left to macerate at room temperature for 4 h. Then, the soaked seeds were extracted by percolation method and the obtained extract was concentrated in a vacuum and was dried in the flat surface. The weight of the obtained extract was 6.5 g. The extract was dissolved in distilled water and was immediately administered interaperitoneally to mice, expressed as mg per kg of body weight for 4 days followed by CIS injection.

Experimental procedure

Thirty mice were divided into five groups (n = 6). The first group (control) received normal saline (0.9% NaCl). Experimental groups were treated with CIS (E1), CIS + 100 mg/kg extract of TT (E2), CIS + 300 mg/kg extract of TT (E3), CIS + 500 mg/kg extract of TT (E4). Body weights of the mice were recorded initially and at the end of the experimental procedure (day 5). Weights of the kidneys were also noted.

Histopathological observations

The mice sacrified by cervical dislocation and removed kidneys were weighted then fixed in 10% neutral buffered formalin. The paraffin blocks were prepared and were cut in 5 am thick sections, which were stained with hematoxylin and eosin and examined by light microscope at × 100 and × 400 magnifications. Kidney's tissue changes were measured using a specialized software package (AE-3; Motic S.L.U., Barcelona, Catalonia, Spain). For this reason, 150 random cross-sections were examined at × 100 and × 400 magnifications, totaling 5 sections/animal. [15] The degree of renal histopathological damages in terms of increase in Bowman's space, tubular cells necrosis and vascular congestion were measured. Increase in Bowman's space in mice that presented the greatest changes in comparison with the control group was considered as 100% damage.

In the rest of the mice, the degree of these damages was measured by comparing them with this group. Other changes, such as cell necrosis and vascular congestion, were measured as the percentage of the total area under microscopic study that had been damaged. Scoring the level of histological damages was done as zero for no damage, 1 for 1-20% damage, 2 for 21-40%, 3 for 41-60%, 4 for 61-80%, and 5 for 81-100%. Then, the total histopathological score was calculated, which was equal to the total score of different damages. [16],[17],[18]

Statistical analyses

In this experimental study; all variables were presented as mean ± standard error. For making intergroup comparisons in terms of kidney weight, the one way analysis of variance with Tukey's post-hoc test were used. Mice were weighted before and after injection of the test paired-sample t-test were compared. The comparison of total histopathological scores between the groups was made by nonparametric Kruskal-Wallis and Mann-Whitney tests. All statistical analyses were done using the SPSS software (Statistical Package for the Social Sciences, version 16.5, SPSS Inc., Chicago, Illinois, USA). P < 0.05 were considered as significant.

  Results Top

The data showed that there were no significant differences in the body weight before and after the experiments in control, E3, and E4 groups (P > 0.05) [Figure 1]. While the body weight was reduced at the end of the experiments in CIS (E1) (P = 0.004) and CIS + 100 mg/kg extract of TT groups (E2) (P = 0.011). The weight of the kidneys in comparison with control group were significantly decreased in E1 (P = 0.002) group but there was not changed in other ones (P > 0.05) [Table 1] and [Figure 2]].
Figure 1: The effect of toxic dose of cisplatin (CIS) (5.5 mg/kg) and different doses of TT on total body weights in the mice (left bar of the pairs is initial weights and the right bar is end weights). The groups (X axis) are control: not treated, E1: CIS, E2: CIS + Tribulus Terrestris (TT) (100 mg/kg), E3: CIS + TT (300 mg/kg), E4: CIS + TT (500 mg/kg). (*P < 0.05, **P < 0.01)

Click here to view
Figure 2: The effect of toxic dose of cisplatin (CIS) (5.5 mg/kg) and different doses of Tribulus terrestris (TT) on the kidneys weights. The groups (X axis) are Control: not treated, E1: CIS, E2: CIS + TT (100 mg/kg), E3: CIS + TT (300 mg/kg), E4: CIS + TT (500 mg/kg). (**P < 0.01 in comparison with the control group)

Click here to view
Table 1: The effects of intraperitoneal TT extract administmiceion on total body weights in the mice

Click here to view

The histopathological changes

There was no histopathological damage in control group and the scores for all histopathological parameters including; Bowman's space, cortical tubular necrosis, medullar tubular necrosis and total damage score were zero [[Table 2] and [Figure 3]]. All histopathological parameters showed significant damage in E1 (CIS treated) group compared to control one [[Table 2] and [Figure 1]]. Indeed, Bowman's space was increased [Figure 3] with a significant score (V) (P < 0.01) [Table 2], cortical and medullar tubular necrosis were observed [Figure 4] and [Figure 5] with score (III) that showed significant increased (P ≤ 0.01) [Table 2] and finally, total damage score [11] was increased.
Figure 3: Microscopic view of the Bowman space widening. (a) Control group, (b) Cisplatin (CIS) group, (c) CIS + Tribulus terrestris (TT) (100 mg/kg), (d) CIS + TT (300 mg/kg), (e) CIS + TT (500 mg/kg) group (H and E, ×100 and ×400)

Click here to view
Figure 4: Microscopic view of the renal cortex with tubular cells necrosis. (a) Control group, (b) cisplatin (CIS) group, (c) CIS + Tribulus terrestris (TT) (100 mg/kg), (d) CIS + TT (300 mg/kg), (e) CIS + TT (500 mg/kg) group (H and E, ×400)

Click here to view
Figure 5: Microscopic view of the renal medulla with tubular cells necrosis. (a) Control group; (b), cisplatin (CIS) group; (c) CIS + Tribulus terrestris (TT) (100 mg/kg); (d) CIS + TT (300 mg/kg); (e) CIS + TT (500 mg/kg) group (H and E, ×400)

Click here to view
Table 2: The effects of intraperitoneal TT administration on renal histopathological scores induced by CIS

Click here to view

The histopathological data in E2, E3, E4 (CIS + 3 doses of TT extract) groups were somehow nearer to control group [Table 2]. The score of Bowman's space was II in E2, E3 groups that were showed significant differences. Surprisingly, the score of Bowman's space was 0 in E4 group (CIS + 500 mg/kg of TT extract) that showed no significant differences with control one [Table 2]. The medullary tubular necrosis was observed in E2-E4 groups with score I that showed significantly increased against control one (P < 0.01).

Hence, this parameter was diminished in comparison with CIS (E1) 1 (P < 0.05) in all three TT extract treated groups (E2-E4). The rate of medullar tubular necrosis in comparison with CIS (E1) group was decreased in E2 with score of II (P < 0.05) and E3, E4 with score of I (P < 0.01). Finally, total damage score in E1 (CIS) group was 11 that showed significant increase in comparison with control (P < 0.01), but the rate of this damage was in E2 group diminished to 5, in E3 to 4 and in E4 to 2 [Table 2].

  Discussion Top

In CIS group, there was a significant declination in the weight of animals. This data supported other studies that indicated reductions in body weight could be attributable to toxic side-effect of CIS. [19],[20] Moreover, previously we showed that 14 days after one cytotoxic exposure of CIS, the weight of the mice was decreased. [15] It seems that inflammatory responses as long as releasing in the weight of animals are acute consequence of CIS administration that occurs during 3-4 days after exposure. [21] The present study adds that diminishing the weight of animals could be observed after 4 days of CIS exposure and as an irreversible side effect, maintains up to 14 days that we showed previously. [15] Kidney is susceptible to injury by chemotherapeutic drugs due to of its function to exclude toxic agents. Inflammatory cytokines, chemokines and adhesion molecules, as well as production of oxygen free radicals, are considered as the main cause of CIS-induced nephrotoxicity that could be hazardous 3 days after one cytotoxic injection of CIS. [6],[21] Applications of diuretic drugs are the main clinical treatment for overcome renal failure induced by CIS. [22],[23] Diuretic drugs relieve accumulation of CIS in renal tissue by increasing the excretion of the drug. Decreasing reuptake of sodium in renal tubules (natriuresis) that leads to excretion of other minerals and also water is the mechanism of action of diuretic drugs. The diuretic effect of TT extract also is been shown. [24]

Thus, decreasing renal side effects of CIS could be considered by diuretic effect of the plant. On the other hand, many studies showed that medicinal plants have major natural antioxidant compounds that could decline side-effects of the drugs on the tissues like kidneys. [25],[26] In this regards, Kavitha and Jagadeesan showed that TT extract could decrease renal side - effects of mercuric chloride by increasing antioxidant enzymes. [12] Although there was no report to show the antioxidant activity of TT extract on CIS induced nephrotoxicity, due to of similarity of action of mercuric chloride and CIS on nephrotoxicity we can consider this effect of the plant for relieving nephrotoxicity in present study. Finally, the presence of organic cation transporters (OCT) could be explained as fourth mechanism involving in TT extract protection against CIS induced nephrotoxicity. OCT is transmembrane proteins that are distributed in proximal tubules of the renal cortex. They act to reuptake and accumulate of CIS to kidney tissue. [27] In the present study, the widespread necrosis in proximal tubules as long as the presence of tubular blocks in of CIS treated mice could be referred to the action of OCT specially OCT2. These data are in parallel with the others that showed accumulation of CIS in proximal tubules increased production of ROS and were responsible for the induction of nephrotoxicity. [16] Furthermore, tubular necrosis causes prohibition of urine outflow that leads to increasing in Bowman's pressure [16],[28] that shown itself in the present study by increasing In Bowman's space of CIS treated mice. In conclusion, CIS induces its nephrotoxicity by production of free radicals such as ROS that leads to the inflammatory process by showing histopathological characteristics such as tubular necrosis and increasing in Bowman's space. TT extract may reliefs the nephrotoxicity of CIS by increasing the excretion of the drug, scavenging the free radicals by its antioxidant activity, suppressing inflammatory agents and also acting on OCT2 proteins.

  Conclusions Top

The present study showed that hydroalcoholic extract of TT may protect the kidney tissue by diminishing histological alteration induced by cisplatin. This nephrotoxicity protection of TT could be seen both in cortex and medulla of subjected rats. Diuretic and antioxidant activity of TT could explain the results of present study. However, there are needed more researches to clear which activity is more potent in nephrotoxicity protection of TT.

  Acknowledgments Top

The authors thank Fertility and Infertility Research Center (FIRC) employees for facility support. This paper is financially supported by Kermanshah University Medical Sciences (grant no. 91400).

  References Top

Wang Y, Juan LV, Ma X, Wang D, Ma H, Chang Y, et al. Specific hemosiderin deposition in spleen induced by a low dose of cisplatin: Altered iron metabolism and its implication as an acute hemosiderin formation model. Curr Drug Metab 2010;11:507-15.  Back to cited text no. 1
Cozzaglio L, Doci R, Colella G, Zunino F, Casciarri G, Gennari L. A feasibility study of high-dose cisplatin and 5-fluorouracil with glutathione protection in the treatment of advanced colorectal cancer. Tumori 1990;76:590-4.  Back to cited text no. 2
Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel) 2010;2:2490-518.  Back to cited text no. 3
Dong Z, Atherton SS. Tumor necrosis factor-alpha in cisplatin nephrotoxicity: A homebred foe? Kidney Int 2007;72:5-7.  Back to cited text no. 4
Mahadev R. Protective effects of cystone, a polyherbal ayurvedic preparation, on cisplatin-induced renal toxicity in rats. J Ethnopharmacol 1997;62:1-6.  Back to cited text no. 5
Matsushima H, Yonemura K, Ohishi K, Hishida A. The role of oxygen free radicals in cisplatin-induced acute renal failure in rats. J Lab Clin Med 1998;131:518-26.  Back to cited text no. 6
Srivastava RC, Farookh A, Ahmad N, Misra M, Hasan SK, Husain MM. Evidence for the involvement of nitric oxide in cisplatin-induced toxicity in rats. Biometals 1996;9:139-42.  Back to cited text no. 7
Sadzuka Y, Shoji T, Takino Y. Effect of cisplatin on the activities of enzymes which protect against lipid peroxidation. Biochem Pharmacol 1992;43:1872-5.  Back to cited text no. 8
Qureshi A, Naughton DP, Petroczi A. A systematic review on the herbal extract Tribulus terrestris and the roots of its putative aphrodisiac and performance enhancing effect. J Diet Suppl 2014;11:64-79.  Back to cited text no. 9
Gauthaman K, Adaikan PG, Prasad RN. Aphrodisiac properties of Tribulus terrestris extract (Protodioscin) in normal and castrated rats. Life Sci 2002;71:1385-96.  Back to cited text no. 10
Gandhi S, Srinivasan BP, Akarte AS. Potential nephrotoxic effects produced by steroidal saponins from hydro alcoholic extract of Tribulus terrestris in STZ-induced diabetic rats. Toxicol Mech Methods 2013;23:548-57.  Back to cited text no. 11
Kavitha AV, Jagadeesan G. Role of Tribulus terrestris (Linn.) (Zygophyllacea) against mercuric chloride induced nephrotoxicity in mice, Mus musculus (Linn.). J Environ Biol 2006;27:397-400.  Back to cited text no. 12
Bagnis C, Beaufils H, Jacquiaud C, Adabra Y, Jouanneau C, Le Nahour G, et al. Erythropoietin enhances recovery after cisplatin-induced acute renal failure in the rat. Nephrol Dial Transplant 2001;16:932-8.  Back to cited text no. 13
Bonakdaran A, Hosseini HF, Sigaroudi FK, Ahvazi M. Investigation of the hypoglycemic effect of Tribulus terrestris extract on diabetic rats. J Med Plants 2008;7:85-92.  Back to cited text no. 14
Khazaei M, Bayat PD, Ghanbari A, Khazaei S, Feizian M, Khodaei A, et al. Protective effects of subchronic caffeine administration on cisplatin induced urogenital toxicity in male mice. Indian J Exp Biol 2012;50:638-44.  Back to cited text no. 15
Changizi Ashtiyani S, Najafi H, Jalalvandi S, Hosseinei F. Protective effects of Rosa canina L fruit extracts on renal disturbances induced by reperfusion injury in rats. Iran J Kidney Dis 2013;7:290-8.  Back to cited text no. 16
Schwartz MM, Lan SP, Bernstein J, Hill GS, Holley K, Lewis EJ. Irreproducibility of the activity and chronicity indices limits their utility in the management of lupus nephritis. Lupus nephritis collaborative study group. Am J Kidney Dis 1993;21:374-7.  Back to cited text no. 17
Ashtiyani SC, Najafi H, Kabirinia K, Vahedi E, Jamebozorky L. Oral omega-3 fatty acid for reduction of kidney dysfunction induced by reperfusion injury in rats. Iran J Kidney Dis 2012;6:275-83.  Back to cited text no. 18
Park HJ, Stokes JA, Corr M, Yaksh TL. Toll-like receptor signaling regulates cisplatin-induced mechanical allodynia in mice. Cancer Chemother Pharmacol 2014;73:25-34.  Back to cited text no. 19
Nematbakhsh M, Ashrafi F, Nasri H, Talebi A, Pezeshki Z, Eshraghi F, et al. A model for prediction of cisplatin induced nephrotoxicity by kidney weight in experimental rats. J Res Med Sci 2013;18:370-3.  Back to cited text no. 20
[PUBMED]  Medknow Journal  
Ueki M, Ueno M, Morishita J, Maekawa N. D-ribose ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice. Tohoku J Exp Med 2013;229:195-201.  Back to cited text no. 21
Heidemann HT, Gerkens JF, Jackson EK, Branch RA. Attenuation of cisplatinum-induced nephrotoxicity in the rat by high salt diet, furosemide and acetazolamide. Naunyn Schmiedebergs Arch Pharmacol 1985;329:201-5.  Back to cited text no. 22
Cvitkovic E, Spaulding J, Bethune V, Martin J, Whitmore WF. Improvement of cis-dichlorodiammineplatinum (NSC 119875): Therapeutic index in an animal model. Cancer 1977;39:1357-61.  Back to cited text no. 23
Jabbar A, Nazir A, Ansari NI, Javed F, Janjua KM. Effects of Tribulus terresteris; to study on urine output and electrolytes in rabbits. Prof Med J 2012;19:843-7.  Back to cited text no. 24
Amin A, Hamza AA. Effects of Roselle and Ginger on cisplatin-induced reproductive toxicity in rats. Asian J Androl 2006;8:607-12.  Back to cited text no. 25
Atessahin A, Karahan I, Türk G, Gür S, Yilmaz S, Ceribasi AO. Protective role of lycopene on cisplatin-induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Reprod Toxicol 2006;21:42-7.  Back to cited text no. 26
Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 2010;176:1169-80.  Back to cited text no. 27
Clarkson MR, Friedewald JJ, Eustace JA, Rabb H. Acute kidney injury. In: Brenner BM, Livine SA, editors. Brenner and Rectore's the Kidney. 8 th ed. Philadelphia: WB Saunders; 2008. p. 943-86.  Back to cited text no. 28


  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5]

  [Table 1], [Table 2]

This article has been cited by
1 A Systematic Review on nephron protective AYUSH drugs as constituents of NEERI-KFT (A traditional Indian polyherbal formulation) for the management of chronic kidney disease
Chuanhai Gaurav,Bushra Parveen,Mohammad Umar Khan,Ikshit Sharma,Anil Kumar Sharma,Rabea Parveen,Sayeed Ahmad
Saudi Journal of Biological Sciences. 2021;
[Pubmed] | [DOI]
2 Effect of combination of Tribulus terrestris, Boerhavia diffusa and Terminalia chebula reverses mercuric chloride-induced nephrotoxicity and renal accumulation of mercury in rat
Harlokesh Narayan Yadav,Uma Shankar Sharma,Surender Singh,Yogendra Kumar Gupta
Oriental Pharmacy and Experimental Medicine. 2019;
[Pubmed] | [DOI]
3 ‘It doesn’t seem like PE and I love it’: Adolescent girls’ views of a health club physical education approach
Gay Timken,Jeff McNamee,Sarah Coste
European Physical Education Review. 2019; 25(1): 109
[Pubmed] | [DOI]
4 A Review on Therapeutic Effects of Tribulus terrestris
L Naseri,M Akbari bazm,M Khazaei
Journal of Medicinal Plants. 2019; 4(72): 1
[Pubmed] | [DOI]
5 Protective effect of Vaccinium arctostaphylos L. fruit extract on gentamicin-induced nephrotoxicity in rats
Mohsen Akbari Bazm,Mozafar Khazaei,Elham Ghanbari,Leila Naseri
Comparative Clinical Pathology. 2018;
[Pubmed] | [DOI]
6 Effects of the Fruit Extract of Tribulus terrestris on Skin Inflammation in Mice with Oxazolone-Induced Atopic Dermatitis through Regulation of Calcium Channels, Orai-1 and TRPV3, and Mast Cell Activation
Seok Yong Kang,Hyo Won Jung,Joo Hyun Nam,Woo Kyung Kim,Jong-Seong Kang,Young-Ho Kim,Cheong-Weon Cho,Chong Woon Cho,Yong-Ki Park,Hyo Sang Bae
Evidence-Based Complementary and Alternative Medicine. 2017; 2017: 1
[Pubmed] | [DOI]
7 Modulatory effects of the fruits of Tribulus terrestris L. on the function of atopic dermatitis-related calcium channels, Orai1 and TRPV3
Joo Hyun Nam,Hyo Won Jung,Young-Won Chin,Woo Kyung Kim,Hyo Sang Bae
Asian Pacific Journal of Tropical Biomedicine. 2016; 6(7): 580
[Pubmed] | [DOI]
8 Doxorubicin- and cisplatin-loaded nanostructured lipid carriers for breast cancer combination chemotherapy
Huifeng Di,Haiyan Wu,Ying Gao,Weihua Li,Dongna Zou,Chuanhai Dong
Drug Development and Industrial Pharmacy. 2016; : 1
[Pubmed] | [DOI]


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  In this article
Article Figures
Article Tables

 Article Access Statistics
    PDF Downloaded288    
    Comments [Add]    
    Cited by others 8    

Recommend this journal